UTP allosterically regulates transcription by Escherichia coli RNA polymerase from the bacteriophage T7 A1 promoter.
نویسندگان
چکیده
In the case of Escherichia coli RNA polymerase, UTP at elevated concentrations suppresses terminated transcript accumulation during multiple-round transcription from a DNA construct containing the T7 A1 promoter and T(e) terminator. The step that is affected by UTP at elevated concentrations is promoter clearance. In an attempt to understand better the mechanism by which UTP regulates this step, we analyzed the effect of UTP on the formation of pppApU in the presence of only UTP and ATP. At elevated concentrations, UTP is a non-competitive inhibitor with respect to ATP in the formation of pppApU. This indicates that the effect of UTP on the formation of pppApU is mediated through an allosteric site. Moreover, the magnitude of the inhibition of pppApU formation is sufficient to account for the decrease in terminated transcript accumulation at elevated UTP concentrations. Thus, it appears that UTP modulates terminated transcript accumulation during multiple-round transcription from this DNA construct by allosteric regulation of promoter clearance at the point of transcription initiation.
منابع مشابه
Kinetic measurements of Escherichia coli RNA polymerase association with bacteriophage T7 early promoters.
During infection of Escherichia coli by bacteriophage T7, E. coli RNA polymerase utilizes only three promoters (A1, A2, and A3). In vitro, the A promoters predominate at very low polymerase concentration, but at higher polymerase concentration the minor B, C, D, and E promoters are used with equal efficiency. The binding constant for the initial association of polymerase with promoters and the ...
متن کاملLow-copy-number T7 vectors for selective gene expression and efficient protein overproduction in Escherichia coli.
A set of low-copy-number vectors (pPD) has been constructed that permit selective gene expression and high-level protein overproduction in Escherichia coli, based on the bacteriophage T7 RNA polymerase/T7 promoter system. These plasmids carry a chloramphenicol resistance gene (cat) as a selective marker and an extended multiple cloning site for convenient gene cloning. Their replication is medi...
متن کاملA bacteriophage T 7 RNA polymerase / promoter system for controlled exclusive expression of specific genes ( T 7 DNA polymerase / T 7 gene 5 protein / proteolysis / 13 - lactamase / rifampicin ) STANLEY TABOR
The RNA polymerase gene of bacteriophage T7 has been cloned into the plasmid pBR322 under the inducible control of the X PL promoter. After induction, T7 RNA polymerase constitutes 20% of the soluble protein of Escherichia coli, a 200-fold increase over levels found in T7-infected cells. The overproduced enzyme has been purified to homogeneity. During extraction the enzyme is sensitive to a spe...
متن کاملStopped-flow kinetic analysis of the interaction of Escherichia coli RNA polymerase with the bacteriophage T7 A1 promoter.
We have conducted a detailed kinetic and thermodynamic analysis of open complex formation between Escherichia coli RNA polymerase and the A1 promoter from bacteriophage T7 by monitoring alterations in the intrinsic protein fluorescence of RNA polymerase in stopped-flow kinetic studies. The stopped-flow kinetic data are consistent with a minimal model involving four steps for the formation of th...
متن کاملInhibition of T7 RNA polymerase by T7 lysozyme in vitro.
The in vivo observation that the expression of bacteriophage T7 gene 3.5 (T7 lysozyme) inactivates T7 class II transcription and the in vitro observation that T7 lysozyme inhibits T7 RNA polymerase lead to the hypothesis that T7 lysozyme might preferentially inhibit transcription from T7 class II promoters. T7 lysozyme was cloned into a lambda pL expression vector, overproduced in Escherichia c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 318 2 شماره
صفحات -
تاریخ انتشار 2002